Cusp forms & Hecke operators for congruence subgroups Let 9 & Zso and let Γ(q) = { 8 € Sl2(Z) = Γ : 8 = (10) mod q } which is called the principal congruence subgroup & level q T(9) & SL2(2) since we have the exact segrence Explain $1 \longrightarrow T(q) \longrightarrow SL_2(\mathbb{Z}) \longrightarrow SL_2(\mathbb{Z}/q\mathbb{Z}) \longrightarrow 1$ exact where the only non trivial part is surjectivity (Exercise) Sequence Then $[SL_2(Z): \Gamma(q)] = \#SL_2(Z/qZ) = q^3 \pi (1 - \frac{1}{P^2})$ proof & (ab) & Sh (2/92), then ad - bc + hq = 1 => (c,d,q)=1 and for each now (c d), I q solutions to ad - be = 1(9) since reog (d, q)=1=> a = (1+bc)d mod q I all values of b is q ones Hence 1512(2/92)1 = 9 | F(C,d) mod q st (c,d,q) = 13 eliminate (c,d) st rig and ricand d Inclusion-Exclusion $= q \left(q^2 - \sum_{P \mid q} \left(\frac{q}{P}\right)^2 + \sum_{P \mid P \mid q} \left(\frac{q}{P \mid P \mid P}\right) - \sum_{P \mid P \mid P \mid q} \left(\frac{q}{P \mid P \mid P \mid P}\right) + \dots \right)$ $= q \sum_{P \mid q} M(r) \left(\frac{q}{r}\right)^2 \qquad r \text{ rons over SF divisors with a sign}$ recall $\sum f(r)$ is a mult. fol then f is some for $(n_1, 2n_2)=1$ there is a bijection between dining and poirs (d, d2) st d, In, & d2 In2 Thun $q \ge \mu(r) \left(\frac{q}{r}\right)^2 = q + \pi f(1) + f(p) + f(p^2) + \dots + f(p^{V_p(q)})$

recall
$$\sum f(r)$$
 is a mult. fc) when f is some for (n, or there is a bijection between d Ininz e pairs (d, dz) st d, In, 2 dz Inz

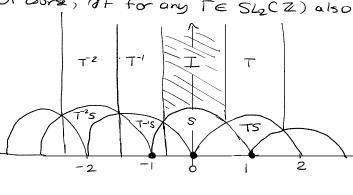
Then $q \sum \mu(r) \left(\frac{q}{r}\right)^2 = q \operatorname{Tr} f(l) + f(p) + f(p^2) + \cdots + f(p^{Vr}) + f(p^2) + \cdots + f(p^{Vr}) + f(p^2) + \cdots + f(p^{Vr}) + f(p^2) + \cdots + f(p^2)$

Cusp & T(9)

Back to T= SLz(Z).

 $\Upsilon = \{z : |z| > 1 \ 8 - \frac{1}{2} < x < \frac{1}{2} \}$ is a fundamental domain

Of course, OF for any TE SL2(Z) also



$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$roy milliams.$$

github. io/

Play/js/st2z

Image 8 00 $700 = \frac{a00 + b}{c00 + d} = \frac{a}{c}$ c = 0 $S(\infty) = 0, TS(\infty) = 1$ T-15 (00) = -1 etc Ne then define

cusp = { 00} U > = } = P'(Q) and $\mathcal{T} \in SL_2(\mathbb{Z})$ acts on P'(Q) by $\mathcal{T} t = \frac{at+b}{ct+d}$

For any $\Gamma \in SL_2(\mathbb{Z}),$ the set & inequivalent cusps in P'(Q)

Then, there is only one equivalent cusp for which is so is we take 4, S4(Z) or Oif we take 87 etc

C# 0

st $\binom{6}{4} = \emptyset \binom{6}{4}$

since (a,b)=1 $p \xrightarrow{p \cap o \in} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ cusp at ∞ . Then $a \equiv 1(q) \Rightarrow \exists u_0 \lor \underline{s} + \alpha u - b \lor = \underline{(1-a)}$ and $\sigma = \begin{pmatrix} q & qv \\ b & 1+qu \end{pmatrix} \in \Gamma(q)$ is the matrix st $\mathcal{T}\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$ when (G) = (1).

In Several, take integers r, s st cr + ds = 1 and

 $T = \begin{pmatrix} c & -s \\ d & r \end{pmatrix}. \quad Then \quad T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix} \equiv \begin{pmatrix} a \\ b \end{pmatrix} \mod q$

or $\tau^{-1}\begin{pmatrix} q \\ b \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix} \mod q \implies \exists \forall st \forall \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \tau^{-1}\begin{pmatrix} q \\ b \end{pmatrix} \text{ by obve}$

 $\Rightarrow T \mathcal{A} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{a}{b} \end{pmatrix} \Rightarrow T \mathcal{A} \begin{pmatrix} \tau^{-1} \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$

In facts we can prove that if $\frac{a}{b}$ and $\frac{c}{d}$ equivalent under $\Gamma(q)$ We are $\Gamma(q)$ st $\sigma(q) = \left(\frac{q}{4p}\right)$

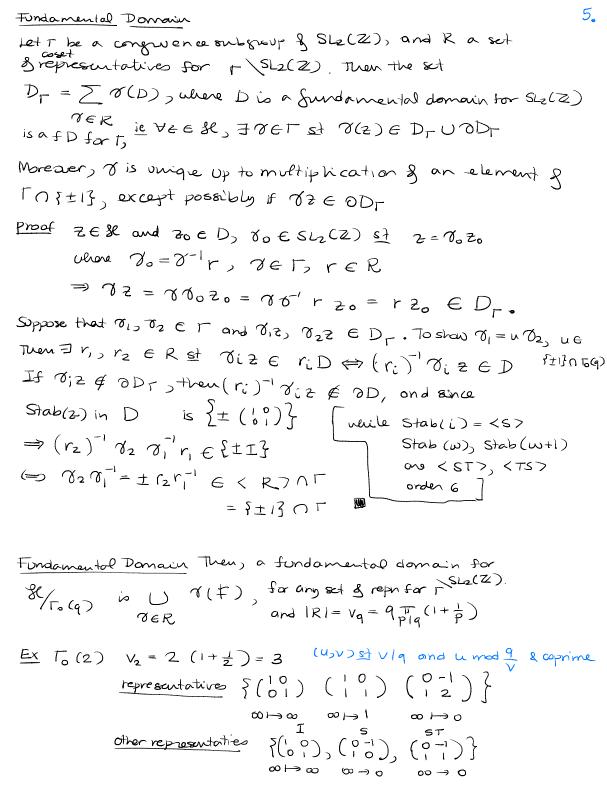
 $\Leftrightarrow \pm \left(\frac{a}{6}\right) \equiv \left(\frac{c}{d}\right) \quad (9)$ If q is odd, then $\binom{-10}{0-1}$ $\not\in$ $\Gamma_0(q)$, and then it suffice to

(c)d) mod q: (c,d,q)=1}=#8 inequivalent

cusps & r(9)

= $q^2 \pi (1 - p^{-2})$ by the above.

Def Any subgroup & SLz(Z) containing T(g) is called a congruence 4 subgroup & level q. For example $T_0(q) = \left\{ \frac{3 \in SL_2(\mathbb{Z})}{2} : \mathcal{X} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod q \right\}$ Hecke congruence subgroup [(q)= [ØE SLz(Z): Ø= (1 *) mod q } Prop A set g representatives for $\Gamma_0(q)$ = $\bigcup \Gamma_0(q) r$ is given by $r \in R \subseteq SL_2(\mathbb{Z})$ (* *) e SLz(Z) Remark The notation * * means once you have u and vas decribed (which are with vlg and $0 < u < \frac{9}{v}$ Hence the index is coprime), choose any m, n st mu+nv=1 and take (mn) Vg=[SLz(Z): [o(q)] = 9 T (1+ 1) $\frac{1}{2} \left(\begin{array}{c} a & b \\ a & b \end{array} \right) \left(\begin{array}{c} a & b \\ c & c \end{array} \right) = \left(\begin{array}{c} * & * \\ a + 6c & ab + 6d \end{array} \right) = \left(\begin{array}{c} * & * \\ a & b \end{array} \right)$ $\Gamma_0(q)$ SL2(Z) $\sqrt{2} = O(q)$ also coprime to q since $\Gamma_0(q) = SL_2(Z)$ and gcd (106+5d, 9) = gcd (6d, 9) = gcd (d,9) = gcd (v, q) and by taking a mitable (a B), we can have V = 7b + 5b = (d,q) ie V | qAll solutions & & b + & d = v one given by & = & + dt (one parameter 6'= 8- bt family) for t being any value $t \in O\left(\frac{9}{5}\right)$ to insure that &' = O(q). This sends u to u'= u+t, so we can change u mod 9. For the undex $[SL_2(Z): \Gamma_0(q)] = \sum_{v \in SL_2(Z)} \left\{ u \left(mod \frac{q}{v} \right) : (u_3v) = 1 \right\} \right|$ $P^{\alpha} + (p^{\alpha-1} - p^{\alpha-2}) + (p^{\alpha-2} - p^{\alpha-3}) + \cdots + (p-1) + 1$ = T Z Plg VIPa V=1 V= p $V=P^{\alpha-1}$ $V=P^{\alpha}$ umad pa U mod pa-1 9 = Vp(9) = (4)1)=1 € (U,p)=1 u mod 1 St (u, pa)=1 $= \frac{1}{P \cdot q} P^{V_{P} \cdot q} \left(1 + \frac{1}{P} \right) = \left| q \frac{1}{P} \left(1 + \frac{1}{P} \right) \right|$



cuspatoo has width 1 ω+1

6.

Another fundamental region: FUST UST# cuspat O has width 2

Prop 2.6 A set & inequivalent cusps for To(9) is given by $\frac{u}{v}$ with $v \mid q$, (u, v) = 1, $u \mod (v, \frac{q}{v})$ some collap orup.

and the number & inequivalent cusps is

$$h = \sum \Psi((v, w))$$
 where Ψ is the Euler Ψ -fct

 $Vw = q$
 $Vw =$

as $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $T = \begin{pmatrix} u & * \\ v & * \end{pmatrix}$. Then $\begin{pmatrix} u & * \\ v & * \end{pmatrix}$ $(\infty) = \frac{u}{v}$ are cosps Then the rational points $\frac{U}{V}$ with $V[q_2(u_3V)=1$, $u \mod \frac{q}{V}$ one cusps.

Suppose
$$\frac{u'}{v'} \sim \frac{u}{v}$$
 le $\exists (\alpha \beta) \in \Gamma_0(q)$
st $(u') = (\alpha \beta)(u)$
 $\in T_0(q)$
Then $v' = \alpha u + \delta v \implies v' \mid v \text{ and } v \mid v' \implies v = v'$

Also, S = 1 mod 9/v. < δ = 1(q) Now $u' = \sqrt{u} + \beta V \equiv du \mod V \equiv \delta u \mod q \equiv u \mod \frac{q}{v}$ which proves the result.

Exercise The # & such (u,v) is h $h = \sum \Psi((v_0\omega)) = \Psi((2,1)) + \Psi((1,2)) = 2$ The spaces M& (TO(N), X) and S& (TO(q), X)

7.

() f is holomorphic on fl @ f | (2) = (c2+d) - k f (82). Then (f | 0) (2) = x(8) f

ie f(12) = x(8) (02+d) & f(2) | 50 8 6 50(9)] 3) f is holomorphic at the cusps, which are the orbits of To(9)

acting on P'(Q) we need to explain relat it means, Now, X is a Dirichet character mod q ie

ie $\chi: (\mathbb{Z}/q\mathbb{Z})^* \longrightarrow \mathbb{C}^*$ extended to \mathbb{Z}

by $\chi(a) = \chi(a \mod q)$ $(a_3q) = 1$

 $\chi(\alpha) = 0$ (a,q)≠1

Also, $\chi(d) = \overline{\chi}(a)$ where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Since $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \Gamma_0(q)$, we have $f(z) = \overline{\chi(-1)} (-1)^k f(z)$ so we also take $\left(\mathbb{X}(-1)=(-1)^{\frac{1}{2}}\right)$ if not the spaces are empty

Me now explain 3

Let O1 be a cusp and te1P'(Q) a representative.

 $\Gamma_{o}(q)_{t} = \{ \sigma \in \Gamma_{o}(q) : \forall t = t \}$

Take $\sigma_t \in SL_2(\mathbb{Z})$ st $\sigma_t = t$ Then $\sigma \in \Gamma_0(q) + \Leftrightarrow \sigma_t \cap \sigma_t$

ESL(Z) and $\mathcal{O}_{t}^{-1} \mathcal{I}_{0}(\mathcal{O}_{t} \mathcal{O}_{t} \leq SL_{2}(\mathbb{Z})_{\infty} = \langle \pm (\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle$

=> 2 = 1 = = { + (1 bmt) : b = Z } := Her &

All this does not depend on representative, and we coold wite Toy etc. The group @ is called Hoy [SL2(Z) 00) and ma = width & the cusp.

Interpretation + (q) = Ur(+)
reRq The number of copies r(7) which touch each cusp of is the same for equivalent cusps and it is may

8.

Let Of be a cusp & width Mor. Chooset E O1 and O+ ESLz(Z), Nto= t

Claim (f) is invariant under that action g Her.

let $V_0 = \begin{pmatrix} 1 & mor \\ 0 & 1 \end{pmatrix}$. Then $V_t V_0 V_t^{-1} = V_0 \in V_0 (q)_t$ by (x) $(\xi | \alpha_t) | \alpha = \xi | \alpha_t \alpha = \xi | \beta_0 \alpha_t = (\xi | \beta_0) | \alpha_t = \chi(\beta_0) \xi | \alpha_t$

and $\chi'(\hat{0}_{q}) f|_{q_{q}}$ is periodic with period mer. Pemark $\chi^{-1}(\widehat{\delta q}) \neq 0$ as $\widehat{\delta} \in \Gamma_{\delta}(q) \Rightarrow \widehat{\gamma} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $C \equiv O(q)$ Write $\chi^{-1}(\widehat{\gamma q}) = e(K\alpha)$ $O \leqslant K\alpha \leqslant 1$

Then e(-Kg Z) f/g(z) is periodic & period hop

e(-kgz)flog can be expressed as a Laurent series

in $q_{Ql} = \exp\left(\frac{2\pi i z}{h_{Ql}}\right)$, as we did before for the cusp ∞ $(f|_{\mathcal{O}_{\mathcal{O}}})(z) = e(k_{\mathcal{O}}z) \sum_{n \geq -N} a_s(n) q_{\mathcal{O}_1}^n$

 $(t|Aa)(s) = e(kas) \sum_{\infty}^{N=0} at(u) da$ $f \in M_{\ell}(\Gamma_{0}(q), \chi)$ $f \in S_{k}(f_{0}(q), \chi)$ $(f|\chi_{0})(z) = \int_{-\infty}^{\infty} a_{0}(n) q_{0}^{n}$ In fact, the condition for cusp forms n=1is needed only for $kol \neq 0$ since we already none exp decay when $kq \neq 0$

Remark By using the saling matrix og & the cusp ESL2(R), related to (Vma O), we can Set that the generating series at each cusp has period 1 le con se uniter as $\sum_{n=1}^{\infty} a(n) e(nz)$ Hecke Operators for Me (To(q), X) & Se(To(q), X) For $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\chi(\rho) := \overline{\chi(a)}$. Then, $\chi(\rho) = 0$ if $(a,q) \neq 1$, and $T_{n}(f) = n^{\frac{k}{2}-1} \sum_{\rho \in \Delta_{n}} \overline{\chi}(\rho) f|_{\rho}$ $\Delta_n = representatives for Gn/$ $= <math>\{(ab): ad=n, 0 \le b \le d\}$ $= n^{\frac{1}{2}-1} \sum_{\rho \in \Delta_n} \overline{\chi}(\rho) f |_{\rho}$ where $\Delta_n^q = \begin{cases} \begin{pmatrix} a & b \\ o & d \end{pmatrix} \in \Delta_n : (a,q) = 1 \end{cases}$ $\begin{cases} ad = n, 0 \leq b \leq d \end{cases}$ $\frac{\text{Recoll}}{\text{Ne coll}} \quad \Delta_n \times \Gamma \longleftrightarrow \Gamma \times \Delta_n$ $\forall p \in \Delta_n, \tau \in \Gamma \ni p', \tau' \xrightarrow{S} p \tau = \tau' p'$ gives $\triangle_n^q \times \Gamma_0(q) \longleftrightarrow \Gamma_0(q) \times \triangle_n^q$ (can be shown by looking at the formulas for explicit intertmining in Irraniec) Thun 6.16 The Hecke operator Tn = Tn x, & is st: $T_n: M_k(\Gamma_0(q), X) \longrightarrow M_k(\Gamma_0(q), X)$ $S_{k}(\Gamma_{o}(q),\chi) \longrightarrow S_{k}(\Gamma_{o}(q),\chi)$ proof Same as before, using the intertmining above, and explorer is preserved by slash operator. 🖪

 $T_n T_m = \sum_{d \mid (m,n)} \chi(d) d^{k-1} T_{\frac{mn}{d^2}}$

does not deprind on where the operators act, and still the.

The moltiplicativity

does not depend on where the operators act leave, all hecke yerators are generated by

$$T_{p}(f) = p^{\frac{k}{2}-1} \sum_{ad=p} \sum_{0 \leq b < d} \chi(a) f\left(\frac{az+b}{d}\right) d^{-k} p^{k/2}$$

$$= \frac{1}{P} \sum_{ad=P} \chi(a) a^{k} \sum_{0 \leq b < d} f\left(\frac{az+b}{d}\right)$$

$$= \frac{1}{P} \sum_{0 \leq b \leq b} f\left(\frac{z+b}{P}\right) + \chi(p) P f(pz)$$

or
$$T_p = \frac{1}{P} \sum_{0 \le b \le p} {\binom{1}{0}} + \chi(p) p^{t-1} {\binom{p}{0}}$$

ITTPIQ then
$$\chi(p) = 0$$
 and $T_p = \frac{1}{p} \sum_{b \mod p} {b \choose b}$

why he need the and using $T_m T_n = \sum_{d \mid (m_3 n)} \chi(d) d^{n-1} T_{mn} d^2$

we get
$$T_{p}T_{p} = T_{p^{2}} \underbrace{\text{etc}}_{2}$$
, $\underbrace{\text{re}}_{2} (T_{p^{V}}) = (T_{p})^{V}$

Thus, Let $k > 2$, $\chi(-1) = (-1)^{k}$. For all $m \ge 0$ and $n \ge 1$, we have
$$T_{n}P_{m} = \sum_{d \mid (m,n)} \chi\left(\frac{n}{d}\right) \left(\frac{n}{d}\right)^{\frac{1}{d}-1} P_{\frac{mn}{d^{2}}}$$

Q relat do ne mean by $P_m = P_m^{\chi, k}$ here?

Princaré series for to(q) with χ $P_m(z) = \sum \chi(\tau) j_{\tau}(z)^{-k} e(m\tau z)$

 $\{\pm (in)\}$

proof As before with obvious modifications. Exercise.

 $E_k(z) = \sum_{\tau \in (a)} \overline{\chi}(\tau) j_{\tau}(z)^{-k}$ is an Eigenfold

8 all To with eigenvalue $\sigma_{k-1}(n_3x) = \sum_{d \mid n} \gamma(d) d^{l-1}$ m > 1 and n 1 q (same prime factors)

then all divisors & (m,n) are not roprime with q, except the divisor 1 30 for $\chi(\frac{n}{d})$ in PHS to be non zero, ve $\frac{n}{d} = 1$ ie $d \mid (m, n)$ contains the value n ie $\lceil n \mid m \rceil$. Then if m >1 and n | goo and n / m

 $T_n P_m = P_{m/n}$ If (n,q)=1, then $\chi\left(\frac{n}{d}\right)=\chi(n)\chi(d)^{-1}$ since $(d_3q)=1$, and

 $T_n P_m = \alpha(n) n^{-k-1} \geq \overline{\alpha}(d) d^{1-k} P_{\frac{mn}{d^2}}$ Cor If $m, n \ge 1$ and (mn, q) = 1, then As hefore sunce the formula 1s

 $\chi(m) m^{k-1} T_n P_m = \chi(n) n^{k-1} T_m P_n$ almost symmetric in mon, We now need the adjoint openetor such thet $\langle T_n f, g \rangle = \langle f, T_n g \rangle$ We could redo the proofs that we did for SLZ(Z) and get

 $\langle T_n f, g \rangle = \chi(n) \langle f, T_n g \rangle$ if (n,g) = 1

But then, we will get a result only for the cusp forms in 12. Sh (ro(q7, x) which are generated by the Poincaré series Pm(2) with (m,q)=1 which are not oil the cusp sorms. But this can be sixed (see Iwaniec), and re get The If (n,q)=1 and $f,g \in S_{\mathcal{R}}(\Gamma_{\mathcal{O}}(q),\chi)$ all of thou $\langle T_n f, g \rangle = \chi(n) \langle f, T_n g \rangle = \langle f, \overline{\chi(n)} T_n g \rangle$ ie the adjoint & Tn is Tn* = T(n)Tn Then In is normal (commutes with its adjoint), and X(n) 1/2 Tn is self adjoint. Remark Applying The nith an eigenfunction f = g + 0, we get $\langle T_n f_1 f_2 \rangle = \lambda_n \langle f_1 f_2 \rangle$ and $\langle f_1 \overline{\chi}(n) \chi(n) \chi(n) f_2 \rangle = \chi(n) \overline{\chi}(n) \langle f_1 f_2 \rangle$ $\Rightarrow \lambda(n) = \chi(n) \overline{\lambda(n)} \quad (n,q) = 1$ Then In the space of cusp forms Se (To(9), X), there exists an orthonormal basis & which consists & Eigenfunctions for all the Hecke operators In with (n,q)=1 (as before linean algebra) Newforms and old forms f E Sk (10(9), X) Hecke Ergenform ie $T_n f = \lambda(n) f$ (n, q) = 1Then if $f(z) = \frac{60}{2}$ arm e(mz), then $\lambda(n) a(m) = \sum_{d \mid (m,n)} \chi(d) d^{k-1} a \left(\frac{mn}{d^2}\right)$ for $(n_2q)=1$ $\lambda(n)a(1) = a(n), (n,q) = 1$. If $a(1) \neq 0$, then we can normalise st a(1) = 1 and $\lambda(n) = a(n)$ for all (n,q) = 1so the acn) have a lot of arithmetre from the Tn. (metglicative!) BUT $|a(1) = 0 \implies f = 0$ ie it is possible that the Fourier

expansion of is only supported on a(n) with (n,q)>1 13. Those are the oldforms associated with non-primative Cinduced from a lower level 9' 19) chanacters X. Take X be a character modulous q rhich is not primitive 12 X is periodic mod q' for q' | q EX $\chi_p = \left(\frac{\cdot}{P}\right)$ Legendre symbol is primitre mod P. It is also a character modulo p2 or ph (exactly the same chanacter) or mod pr for any rEZ>1 (differs at cn,r)+1). Def The conductor of (x modulog) is the smallest integer d > 1 st x is periodic med d ie x(m) = x(n) for m = n (d)

Let x be a character mod q relich is primitive

Thunk mod 9* 19, and 9's d & Z/21 st 9* 19' ond 9'd 9. 10'=9* Let χ' mod q' be the character mod q' induced by χ_{j} is $\chi'(q) = \chi(q)$ Two $f(z) \in S_k(\Gamma_0(q'), \chi') \Rightarrow f(dz) \in S_k(\Gamma_0(q), \chi)$ $(\alpha, q') = 1$ $f(dz) |_{\sigma} = f(d, 0)(\alpha, \beta) = f(\alpha, \beta, \beta, \beta) =$ Now if $f(z) = \sum_{m=1}^{\infty} a(m) e(mz)$ (at some cusp) then $f(dz) = \sum_{m=1}^{\infty} a(m) e(mdz) = \sum_{m=1}^{\infty} a(\frac{m}{d}) e(mz)$ ie (m,q)>0 always Such fore collect old forms. If $S_k^b(r_o(q), \chi)$ is the linear space spanned by obstorms, then let St (To(9), x) be the orthogonal space (w/r to Poterson's inner product).

The $S_k(\Gamma_0(q), \chi) = S_k^b(\Gamma_0(q), \chi) \oplus S_k^*(\Gamma_0(q), \chi)$ 4. and both spaces are stable under the Hecke operators To with (n=9)=1 proof One can check directly that Tn: Sk - St and since $T_n^* = \overline{X}(n)T_n$ (the adjoint) iffest and ges# $0 = \langle T_n f, g \rangle = \langle f, T_n^* g \rangle \Rightarrow T_n^* g \in (S_k^b)^{\perp} = S_k^{\#}$ = 0 ana Tnf

Hecke Esgu cusp forms for primitive X Then $S_k^{\sharp}(\Gamma_0(q), X) = S_k(\Gamma_0(q), X)$

This If f E Sy (To (9), X) is such that acn)=0 for $(n_1q)=1$, then f=0! Proof

Write $f|_{\tau} = \chi(\tau)f$ for $\tau = \begin{pmatrix} a & \\ c & d \end{pmatrix} \in T_{\sigma}(q)$ $f\left(\frac{oz+b}{cz+d}\right)(cz+d)^{-k} = \chi(d)f(z)$ ono replace 2 by $\frac{2-d}{c}$ to set

 $2^{-k} f\left(\frac{a}{c} - \frac{1}{c^2}\right) = \chi(d) f\left(\frac{2-d}{c}\right) = \chi(d) f\left(\frac{2}{c} - \frac{d}{c}\right)$ and uniting the Former expansions at both sides give

 $2^{\frac{1}{2}}\sum_{m}a(m)e\left(\frac{am}{c}-\frac{m}{c^{\frac{2}{2}}}\right)=\chi(d)\sum_{m}a(n)e\left(\frac{n^{\frac{2}{2}}-dn}{c}\right)$ with O<c=0(9) (to avoid dividing by 0...)

and ad = 1 (c) (determinent 1)

15. Using c= q and summing over a mod q, casq)=1 when $ad \equiv I(q) \Rightarrow \overline{a} \equiv d(q)$ rinerse mod q $\frac{RHS}{\sum} a(n) \sum \overline{\chi}(a) e(\frac{\overline{a}n}{q}) e(\frac{n^2}{q})$ (a, q) = 1 $a \mod q$ $\sum \chi(\alpha) e\left(\frac{-a_n}{a}\right)$ $(a_{3}9) = 1$ 9 mod g If (n,q)=1 b=-an gives $\sum_{(bq)=1}^{\infty} \chi(\frac{b}{n}) e(\frac{b}{q}) = \overline{\chi}(-n) \sum_{(b)} \chi(b) e(\frac{q}{n})$ b mod g means x(b) x(-n) bmdg Gauss sum Z(X) If X 15 primitive, this is also have for (n, q) > 1 ie for all n. Exercise $\Rightarrow \sum_{n=0}^{\infty} a(n) \sqrt{(-n)} T(x) e\left(\frac{nz}{q}\right) = 0$ a(n)=0 (n,q)=1 hypothesis 8ina X(-n)=0 (n,q)>1 chan of modulus q and RHS = 0. By unicity of Fourier expansion, this implies that LHS various, where LHS = z^{-k} $\sum_{m=1}^{\infty} a(m) e\left(\frac{-m}{9z}\right) \sum_{(a,a)=1}^{\infty} e\left(\frac{am}{9}\right)$

where $C_q(m) = \frac{\sum e(\frac{am}{q})}{(a_3q)=1}$ Remanujan a mod qExercise If $\mu^2(q) = 1$, then $C_q(m) = \mu\left(\frac{q}{(m,q)}\right) \left(\ell((m,q))\right)$

and in partialar $(q(m) \neq 0 \forall m)$ \Rightarrow a(m) = 0 for all m !!! If 9 is not SF, more involved argument

(Ivamec) Remark If X is primitive order e, then cond(x) is SF away from l.

Ex Princitive chan & order 2 mod pk, k ≥ 1, p ≠ 2

 $X = \left(\frac{1}{P}\right)$ Legendra symbol of conductor p

Primitive characters & storber 2 mod 26, k ≥ 1 $\chi_4(n) = \begin{bmatrix} 1 & N = 1(4) \\ -1 & N = 3(4) \end{bmatrix}$

Cor iff # 0 an Eigenfunction of all Hecke operators

st (n,q)=1, then $a(1)\neq 0$, since a(1)=0and $\alpha(n) = \alpha(1) \gamma(n)$

∀ (n,q) = 1

implies a(n)= 0 \(\forall (n_2q)=1 => f= 0 by Thm. thm, I is determined uniquely by the Eigenvalues 8 Tu for (nog)=1 (Moltipliaty one principle) using f-9 for f in Thm T_{lon} , $T_{n}(T_{m}(f)) = T_{n}(T_{m}f) = \lambda(n)T_{m}(f)$ for $(n_2q)=1$ => Tm (+) has the same EV as f for (n, q)=1 $=) T_m (+) = \lambda(m) f$ This leads to The If f & Sp (To(q), X) is an eigen-sct for all In st (n,q)=1, thou f is an eignfot for all T_m , ie $T_m(f) = \lambda(m)f$ Besides the Hecke operators, he need the Fricke (or Atkin-Lehner) involution: Def $Wf = f |_{\omega}$ where $\omega = \begin{pmatrix} 0 & -1 \\ q & 0 \end{pmatrix}$ = $det(\omega)^{\frac{k}{2}}(qz)^{-\frac{k}{2}}f(-\frac{1}{q})$ & To (q) since $= q^{k/2} q^{-k} z^{-k} f(-1/q)$ cle+ = 9 $= q^{-k/2} z^{-k} f(-1/q)$

$$WT_{n}^{\chi} = \chi(n) T_{n}^{\chi} W$$

$$Proof WT_{n}^{\chi}(f) = n^{\frac{k}{2}-1} \sum_{\rho \in \Delta_{n}} \overline{\chi}(\rho) f|_{\rho \omega}$$

$$T_{n}^{\chi} W(f) = n^{\frac{k}{2}-1} \sum_{\rho \in \Delta_{n}} \chi(\rho) f|_{\omega \rho}$$

and more intertning.

(see Irranier) 🗏

To deal with x & x, define the complex conjugation operator K $(kf)(z) := \overline{f}(-\overline{z})$

If $f(z) = \sum_{\alpha(n)} e(nz)$

then $(kf)(z) = \sum \overline{a(n)} e(-n\overline{z}) = \sum \overline{a(n)} e(nz)$ $\frac{-2\pi i n(x-iy)}{e} = e^{-2\pi i n x} - 2\pi n y = e^{-2\pi i n x}$ $= e^{2\pi i(nx + iny)} = e(nz)$

Propertico OKAF = 7 KF DEC

 $(2)k^{2}=1$, $Wk=(-1)^{k}kW$ $\exists \ \mathsf{K} : \mathsf{S}_{\mathsf{k}}(\mathsf{F}_{\mathsf{o}}(\mathsf{q}), \mathsf{X}) \longrightarrow \mathsf{S}_{\mathsf{k}}(\mathsf{F}_{\mathsf{o}}(\mathsf{q}), \mathsf{\overline{X}})$

< kf, kg> = <f,g>

Set W = KW Then

0 W2=1, Wnf= nWf for M∈ C

 $\bigcirc \overline{W}: S_k(\Gamma_0(q), \chi) \longrightarrow S_k(\Gamma_0(q), \chi) | \overline{NOW}$

3 $T_n \overline{W} = \chi(n) \overline{W} T_n$ if (n,q) = 1

Now suppose that $f \in S_k(\Gamma_0(q), X)$, $f \neq 0$, is an Eigen 20. function for all T_n with eigenvalues $\mathcal{T}(n)$ for (n,q)=1. Then $T_n \overline{W} f = \chi(n) \overline{W} T_n (f)$ $= \chi(N) \underline{M} y(N) +$ = x(n) \(\bar{\gamma}\) \(\bar{\gamma}\) f (6.57) (=) $\Lambda(n) \overline{W}f$ (n, 9) =) ie Wf is an eigenfunction of To with eigenvalues Same as f for (n,q)=1> Wf = nf by multiplicity one. Thm If f is a Hecke cusp form in Sk (109) x) then fis also an eigenfunction of W IC Wf = Mf. Furthermore, In1= 1. proof he just proved the statement except the forthormore: By the above properties $f = \overline{W}^2 f = \overline{W} n f = \overline{n} \overline{W} f = \overline{n} n f$ => |nn |= 1. Thm | The eigenvalue of the involution V for $f \in S_k(F_0(q), \chi)$ a normalized Hecter eigen cusp form is given by $M = T(\overline{\chi}) \gamma(q) q^{-k/2}$ proof Again some matrix decomposition $\begin{pmatrix} 1 & u/q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1/q \\ q & 0 \end{pmatrix} \begin{pmatrix} 1 & v/q \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} u & (uv-1)q \\ q & v \end{pmatrix}$ where we choose UVE) (q)

Then
$$f | (\frac{1}{0}, \frac{\sqrt{9}}{9}) (\frac{1}{9}, \frac{\sqrt{9}}{9}) = f | M (\frac{1 - \sqrt{9}}{0})$$

$$= \chi (v) f | (\frac{1 - \sqrt{9}}{0})$$

since $f \in S_k (T_0(9) > \chi)$.

21.

St the moth'x M on RHS & To (g).

Summing over
$$u \mod q$$
, $(u,q) = 1$, $w \text{ Set}$

$$9 = \sum_{\substack{u \mod q \\ (u,q)=1}} f \begin{pmatrix} u & u & q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1/q \\ q & 0 \end{pmatrix}$$

$$uv = 1 (q)$$

$$= \sum_{\substack{v \text{ mod } q \\ (v,q)=1}} \chi(v) f$$

$$= \sum_{\substack{v \text{ mod } q \\ (v,q)=1}} \chi(v) f$$

hotree ded
because
$$g \propto$$

8 where f is normalized,
 $f(x) = \sum_{n} \lambda(n) e(nZ)$

Fourier
pan syon
 $f(z) = \sum_{n} \chi(v) f(z - \frac{v}{q})$

and using
$$f(z) = \sum \lambda(n) e(nz)$$

The Fourier expansion

(RHS)

 $g(z) = \sum \chi(v) f(z - \frac{v}{q})$
 $v \mod q$
 $= \sum_{n=1}^{20} \chi(n) \left[\sum \chi(v) e(-\frac{nv}{q}) \right] e(nz)$

$$= \sum_{n=0}^{\infty} \chi(n) \left[\sum_{n=0}^{\infty} \chi(n) e^{-nv} \right]$$

 $= \sum_{n=1}^{\infty} \lambda(n) T(n,x) \chi(-1) e(nz)$

$$\Rightarrow kg(z) = \chi(-1)\tau(\chi) \sum_{n=1}^{\infty} \overline{\chi}(n)\chi(n) e(nz)$$

$$= \chi(-1)\overline{\tau(\chi)} \sum_{n=1}^{\infty} \overline{\chi}(n)e(nz)$$

$$= \chi(-1)\overline{\tau(\chi)} \sum_{n=1}^{\infty} \overline{\chi}(n)e(nz)$$

$$= \chi(-1)\overline{\tau(\chi)} \sum_{n=1}^{\infty} \overline{\chi}(n)\chi(n) e(nz)$$

$$= \chi(-1)\overline{\chi}(n)\chi(n) e(nz)$$

$$= \chi(-1)\overline{\chi}(n)\chi(n)$$

$$= \chi(-1)\overline{\chi}(n)$$

LHS $= \frac{1}{u \mod q} \left(\frac{u}{u} \right) \frac{use}{d (u,q)} = \frac{1}{u \mod q} \left(\frac{u}{u} \right) \frac{use}{d (u,q)} = \frac{1}{u \mod q} \frac{use}{d (u,q)} =$

we get another expression for g, and three kg which is: $= T(\bar{\chi})(Sqf)(z)$ Comparing the first FC: T(X) N(1) = M N(9) q1-1/2 N(1)

and some motrix computations which make $W = f \left(\begin{pmatrix} 0 - 1 \\ 9 & 0 \end{pmatrix} \right)$ and then χ $kg(z) = M \sum_{ad=q} \mu(a) \overline{\lambda}(d) {a \choose d}^{k/2} df(az).$

and the result follows.